1 Richard is a window cleaner.
For each house he visits, he charges a fixed amount of $£ 5$ plus 60 p for each window cleaned.
(a) Sam's house has 10 windows.

How much does Richard charge to clean Sam's windows?

(a)

(b) Richard's charges lead to the formula $C=0.6 w+5$, where C is the charge in $£$ for cleaning the windows of a house with w windows.

Anna is also a window cleaner.
For each house she visits, she charges a fixed amount of $£ 8$ plus 20 p for each window cleaned.
(i) Write down the formula to give the charge $£ C$ for Anna to clean the windows of a house with w windows.
(b)(i)
(ii) Use algebra to find the value of w that gives the same charge for both Richard and Anna.

(ii)

(iii) Comment on what your answer to part (b)(ii) means in real life.

2 (a) Complete the table of values for $y=0.5^{x}$.

x	0	1				
y		0.5			0.0625	0.03125

(b) Draw the graph of $y=0.5^{x}$ for $0 \leqslant x \leqslant 5$.

(c) Use your graph to solve this equation.

$$
0.5^{x}=0.4
$$

(c)

3 Write one of
Equation Expression Formula Identity
as appropriate next to each of the following.

$$
\begin{aligned}
& 2 x+9 \\
& 3 x-1=5 \\
& 3(2 x-1)=6 x-3
\end{aligned}
$$

4 (a For one day's hire, Carol's Coaches charges 30p for each mile travelled, plus $£ 120$.
Write a formula for the charge, $£ C$, for one day's hire from Carol's Coaches when n miles are travelled.

(a)

(b) (i) This is the formula for the charge, $£ B$, for one day’s hire from Ben's Buses when n miles are travelled.

$$
B=0.4 n+80
$$

Ben's Buses charged an athletics club £110 for one day’s hire.
How many miles did the bus travel that day?
(b)(i)
miles [3]
(ii) Ben's Buses asks the athletics club to complete a customer satisfaction survey. Here is one question in the survey.

Don't you think that your bus hire was good value for money?
Make one criticism of the question and write an improved version of the question.
Criticism: \qquad
\qquad
Improved version: \qquad
\qquad

5 Janet is planning a conference.
The hotel charges $£ 150$ for the meeting room plus $£ 70$ for each person who attends.
(a) Write a formula for the total charge, $£ C$, when n people attend a conference.
(a) $C=$
(b) Janet can afford a maximum total charge of $£ 3300$.

Write an equation and solve it to find the largest number of people that could attend.
(b)

6 (a Multiply out.

$$
6(3 y+5)
$$

(a)
(b) Factorise.

$$
5 y-15
$$

(c) Solve.

$$
7 x-2=5 x+11
$$

7 Dave's Plumbing charges $£ 30$ for a callout and $£ 25$ for each hour that a job takes.
(a) Write a formula for the total charge, $£ C$, that Dave's Plumbing makes for a job taking n hours.
(a)
(b) Mrs Brown was charged $£ 92.50$ for a job that Dave’s Plumbing did. How long did the job take?
(b)
hours [2]

8 (a Solve.

$$
3(2 x-1)=6
$$

(a)

(b) Find the value of $3 y^{2}+5$ when
(i) $y=2.6$,
(b)(i)
(ii) $y=-4$.
(ii)

9(a A football stadium has 10 car parks and 2 coach parks.
Each car park has space for m cars.
Each coach park has space for d coaches.
Write an expression for the total number of cars and coaches that can park at the stadium.
(a)
(b) One Saturday afternoon, there are t coaches at a theme park. There are $2 t$ people in each coach.
(i) Write an expression for the total number of people in the coaches.
(b)(i)
(ii) Find the total number of people in the coaches if $t=20$.
(ii)

10 (a Simplify.

$$
3 a^{2} \times 4 a
$$

(a)
(b) Work out the value of $4 b^{2}$ when $b=-2.5$.
(b)
(c) Solve.

$$
5(2 x-7)=3
$$

(c)
(d) Factorise.

$$
12 x^{2}+8 x y
$$

